674. Longest Continuous Increasing Subsequence
Given an unsorted array of integers, find the length of longest continuous increasing subsequence.
Example 1: Input: [1,3,5,4,7] Output: 3 Explanation: The longest continuous increasing subsequence is [1,3,5], its length is 3. Even though [1,3,5,7] is also an increasing subsequence, it's not a continuous one where 5 and 7 are separated by 4. Example 2: Input: [2,2,2,2,2] Output: 1 Explanation: The longest continuous increasing subsequence is [2], its length is 1. Note: Length of the array will not exceed 10,000.
/ Intuition: 计算相邻的差,如果大于0,前进直至遇到小于0,记录长度,以此类推,遍历完数组,len = max(len, i); /
public int findLengthOfLCIS(int[] nums) {
//构造数组sum,用于存放数组nums的差值
int []sum = new int[nums.length+1];
int []max_num = new int[nums.length];
for (int i = 1; i < nums.length; i++) {
sum[i] = nums[i] - nums[i-1];
}
//对数组sum操作
int len = 0, j = 0, status=0;
for (int i = 1; i < nums.length; i++) {
if(sum[i] > 0)
len++;
else {
max_num[++j] = len;
len = 0;
}
}
//遍历找出最大子序列长度
for (int i = 0; i < max_num.length; i++) {
len = Math.max(max_num[i],len);
}
if(nums.length <= 0)
len = -1;
return len+1;
}
//上面代码空间占用太多,删掉数组sum和max_num,直接在nums操作
public static int findLengthOfLCIS(int[] nums) {
//操作数组nums,将相邻的差值存储在i-1
for (int i = 1; i < nums.length; i++) {
nums[i-1] = nums[i] - nums[i-1];
}
int max_len=0,len = 0;
for (int i = 0; i < nums.length-1; i++) {
if(nums[i] > 0)
len++;
else {
max_len = Math.max(max_len, len);
len = 0;
}
}
max_len = Math.max(max_len, len);
if(nums.length <= 0)
max_len = -1;
return max_len+1;
}